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ABSTRACT: Aluminum, gold, platinum, and tungsten wires were
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the initiation of PETN by exploding wires. The wires were
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The results indicate that favorable wire materials are those
into which energy is deposited at a rapid rate. They also
have low boiling points and low heats of vaporization. Heat
of oxidation of the wire material plays only a minor role.
Different wire materials have different optiirum lengths for
effecting detonation.
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INTRODUCTION

I. This report is the fifth in a series describinq
experimental results obtained from an investiqation on
exploding bridgewires. Previous investigationsI,' , 3,4 have
shown that the firing circuit inductance and resistance
should be kept to practical minimums, that there ii an optimum
bridgewire diameter for effecting detonation of PETN when the
bridgewire length and circuit parameters are fixed, that there
is an optimum bridgewire lenqth iwhen the bridqewire diameter
and circuit parameters are fixed.

2. This phase of the investigation was concerned with
determining the effect cf the wire material on the growth of
explosion of PETN. The choice of the wire material in an EBW
will depend on both practical considerations and on the
intrinsic properties of the wire material. Practical consid-
erations would include mechanical strength, ease of attachment
and corrosion resistance. Intrinsic properties of importance
might include specific resistance, thermal coefficient of
resistivity, dennity, specific heat, melting point, heat of
fusion, boiling point, and heat of vaporization. The
importance of the intrinsic properties was not known,
Platinum was used to start the investigation because it was
known that platinum would meet the practical considerations.
Platinum, tungsten, and nickel-chromium alloy are mentioned
as desirable wire materials in U. S. Patent 3,040,660, which
appears to be the original patent on exploding bridgewire
initiatiors.* In this report aluminum, gold, and tungsten
wires are compared to platinum for their ability to detonate
PETN.

ELECTRICAL CIRCUITRY

A typical explodinq bridgewire firinq circuit used in
ordnance consists of a one microfmrar, capacitor charqed to
2000 volts. The enerqv in the capar-itor is dlscharqed into
the wire throuqh a switch. Th•e test circu7i used for this
investigation is shown in Fiqure 1. It is similAr to the
previous test circuits descrillied in tHe earlier reports. The
electrical parameters for the test circvi t are:

C = 0.97 microvarad
L = 0.rR microhenrv
R 0. 3; ohli

Vo 2000 volts

* U. S. Patent 3,040,66(0 by Lawrence H. Johnston, Patented
June 26, 1962, Filed Nov. 8, 1944.
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The methods used for determining the circuit parameters are
given in Reference 1 and 2.

TEST PROCEDURE

Various lengths of the four bridgewire materials tested
were compared for their ability to detonate PETN. A 2-mrl diam-
eter wire was used for each material. The four wire materials
were examined in a series of test shots with wire lengths
ranging from 0.0125 ,to6 0.400 inch. The probability of deto-
nating PETN was gradually decreased in each series, by increas-
ing the loading density of the PETN. This approach eliminated
the necessity for changes in the electrical parameters, This
method was used to determine the most advantageous wire material
and its optimum length. The test fixture and experimental
methods described in Reference 1, were used for observing the
growth of explosion.

Current and voltage waveforms were examined to help inter-
pret the experimental results. The voltage was corrected for
the inductive component, and the corrected voltage used to
calculate the derived resistance, power, and energy values.
The vigor of the plasma expansion of the four bridgewire mate-
rials when flush mounted was also examined with a high speed
smear camera.

EXPERIMENTAL RESULTS

An examination of Tables 1, 2, 3, and 4 shows, that based
on the ability to detonate PETN under increasingly difficult
conditions, gold is the best of the materials tested. Aluminum,
platinum, and tungsten followed in that order. The tables
also indicate the optimum wire length for detonating PETN for
each material. These optimum lengths are as follows:

Gold - 0.075
Aluminum - 0.075
Platinum - 0.050
Tungsten - 0.025

They are indicated by a black dot in the figures. Various
electrical and physical attributes of the different wire mate-
rials were then examined.

Examination of the current waveforms in Figures 2, 3, 4,
and 5 show the shorter wires, to have the highest current density
at time of burst. The shorter the wire, the more nearly contig-
uous the resurge is with the initial current pulse. For all
four materials 0.200 inch and longer lengths give definite
current dwells. Platinum and tunqsten show wider burst current
dispersion* for the various length wires than aluminum or gold.

2
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Comparison of Figures 6, 7, 8, and 9 show gold to have
the highest peak voltage of the four materials, followed by
aluminum, platinum, and tungsten. The highest peak voltage
was observed with the 0.400 inch length gold wire (not plotted).
This wire had a peak voltage of approximately (-700 volts, or
over three times the original ca•p.citor voltage. A gold wire
length of 0.075 inch, which appears to be the optimum length
for effectinq detonation, gives a peak voltage of 3600 volts.
These voltages are indicative of the extreme voltage that the
electrical insulation must be capable of handling using the
experimencal parameters of a one microfarad capacitor charged
to 2000volts. Examination of the voltage waveforms in
Figures 8 and 9 show that platinum and tungsten wires give
definite vaporization plateaus. The waveforms for tungsten
show a peculiar dip in the vaporization plateau.

The resistance curves for aluminum and gold, Figures 10
and 11, show a fairly smooth rapid rise of the wire resistance
with time. The longer the wire, the higher the peak resistancb
for the rance tested, The resistance curves for platinum and
tungsten, Figures 12 and 13, show a definite resistance plateau
before the peak resistance is reached. The resistance of
tungsten decreases during the first half of the vaporization
plateau. The dynamic resistance values for the four test
materials do not differ greatly for comparative lengths.

A comparison of the power curves in Figures 14, 15, 16,
and 17 reveals that in general energy is deposited most
rapidly in gold followed by alumin~uv platinum, and tungsten.
Tho peak pcwer spikes are much narrower for aluminum and gold
than for platinum and tminqsten. For all four materials the
peak power per unit length increases with decreasing length.
See Figure 18. The highest peak power value is observed to
occur at a length which is longer than the optimum length
for effectirn detonation.

If the eierqy deposition is examined Figures 19, 20,
21, and 22, one observes with all four materials that energy
deposition is initially sliqhtly f,%ster with the longer wires.
This is due to the hlqher initial resistance of the bridgewire.
The optimum lenqth for each material absorbs approximately one
joule of energy or sliqlhtlv more than o(% of the enerqy
originally stored in the Capacitor. Enerqv deTNostion into
the longer wires effectivelv stops witl, the onset of a
definite dwell. For all four materials, the shorter wires
received more enerqy than necessary for complete vaporization
at a time of 'brst. It was possible t- vaporize lonqer wires
of aluminum and gold than of platiniur, or tungsten under
comparable conditions of diameter and electrir-al input.

3
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The results al3o confirm previous observations that the wire
does not have to completely vaporize at burst to effect
detonation. Figures 23, 24, 25, and 26 show the energy
profiles for selected times during the normal period of
importance. Comparison of the energy density on a volume
basis in Figure 27 shows that the shorter lengths have a
higher energy density.

The plasma expansion in air of each of the four materials
was examined for the 75-mi ]lngth. Figure 28 is a distance-
time plot of the plasma expansion. Aluminum and gold give
the most vigorous expansions, indistinguishable in strength,
followed by ?_atinum, and then tungsten. The viqor of the
plasma expansion appear- to le related to the excess energy
deposited above that required for vaporization.

The 0.200 inch length gold wire gave a different type of
growth to detonation than previously observed. Figure 29
shows that there is a definite prolongation of the reaction
before the detonation wave is apparent photographically. The
incipient conditions necessary for formation of a detonation
wave are evidently established in the neriod un to time of
burst since electrical enerqy input ceases at burst with the
fcrmation of a definite dwell period. Detonation commenced
1.35 to 1.40 microseconds after burst approximately 1.6 mm
from the wire. Normally, detonation was seen to commence
approximatel, 1.0 microsecond after burst about 1.0 mm from
the wire. -%•e iaitial reaction does not emit liqht of suffi-
cient intensitv to register on the film even with the use of
maximum exposure conditions.

DISCUSSION

The investigation shows that the intrinsic properties cf
the wire material play an important role in determinng5,
whether or not detonation is effected. Russian investigators
in the mid 1950's found that certain groups of wire materials
had similar characteristics. Silver, gold, aluminum, and
copper wire oscillograms were found to have mar.4,J similarities.
Iron, tungsten, molybdenum, and platinum had analogous oscillo-
grams with different characteristics from the first group,
Webb et al 7 have proposed that the wire materials can be
classified into two phenomenological categories:

Class I low boiling point, low heat of ,iporizaticn
(lass Ii high boiling point, high heat Lc vaporization

Aluminum and gold, which fall into Class I, were found to

effect detonation in PETN under more unfavorable conditions

4
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than platinum or tungsten, which are Class II materials. It
appears that for the parameter magnitudes used, the heat
capacity effect of the wire material is important. The use
of wire materials with low boiling points and heats of vapori-
zation will result in a greater energy transfer to the exTplo-
sive. It is, however, conceivable "or special cases, that
Class II materials might be preferable for initiators where a
higher firing energy threshold is desired.

The ability to effect eetonation under increasingly
unfavoral e conditirns appears to depend not only on the
heat capacity effect •f the wire, but upon the rate of energy
deposition. Scherrer has shown, assuming the exploding wire
is a blackbody, that /4

where T = wire temperature in OK, P - electrical power
into wire in watts, c = Stefan-Boltzman constant, and
A = area of wire exploding surface.

Since the explosive decomposition has an Arrhenius dependence
upon temperature, conditions favoring a high temperature will
be more favorable for effecting detonation. Th_2 peak power
levels for the Class I materials (aluminum, gold) were observed
to be higher than those of the Class II materials (platinum,
tungsten) over most of the bridgewire length range tested.
The power level appears to be related to che energy needed for
vaporization since materials with a relatively high energy
requirement possess a definite vaporization plateau which in
effect lowers the power input before bridgewire burst. The
slight superiority of gold over aluminum is believed due to
the higher rate of eniergy deposition in gold een thtugh less
energy is required to vanorize the aluminum.

it was previously observed with onlatinum wire that there
was an optimum platinum bridgewire length for ef>7ecting
detonation in PETN. The aluminum, qold, and tunqsten results
confirm that an optimum bridgewire lenqth exists. The optimum
length varies with the wire material. Materials from Class II
arpear to have shorter optimum 1c: -ths than thnse from Class I.
This can be partially attributed to the heat capacity of the
wire material.

Explosions of qold and platinum ir air produce an aerosol
which consists of metallic rather than oxide particles. 9

Aluminum and tungsten wires form oxides upon explosion.
However, each is the poorer material in its respective class
in effectinq detonation in PETN. This indicates that heat

5
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of oxidation plays a relatively minor role, if any. Assuming
the eventual formation of Al 2 0 aluminum has a hiqh heat of
oxidation anounting, for a 020,5-inch length wire, to approxi-
mately 20% of the electrical energy deposition. However, it

has been rep)rted that Al 0 apparently does not exist in the
vapor state.10 The oxida?ion of aluminum in the gaseous phase
is assumed to occur according to the following reaction:I!

Al(g) + 1/2 0 2(g) -7p AIO (g)

High pressures will tend to force the reaction to the right,
but high temperature will reverse the reaction. It is quite
probable the high temperature effect predominates during the
wire explosion, delaying the eventual heat of oxidation
contribit ion.

With gold wire, growth to detonation can occur even with
cessation of the electrical energy input just after the time
of wire buret. The wire length (0.200 inch) giving this effect
fails quickly as PETN density is increased. Previously it had
been found with certain platinum wires, that a sustained
electrical input after burst was favcrable for the growth of
detonation and that wires with current pulse cessation failed
to effect detonation. This illustrates the more favorable
qualities of a Class I material. This phenomenon will be
investigated further. Experiments are also continuing on the
wire material effect. Different wire materials are being
evaluated to observe if they conform to the extrapo' .tions
made from the first four materials described in this report.

The vigor of the plasma expansion in air seem3 to
correlate well with the ability to detonate PETN. As shown
earlier, the vigor of the plasma expansion appears to be
related to the exceas eneray deposited above that required
for vaporization. This excess energy will go into further
heating of the vapor, shock, and kinetic energy forms resulting
in a greater energy transfer to the explosive and the envelop-
ment of a greater number of PETN crystals.

CONCLUSION

1. The existence of an optimum wire material fc-
effecting detonation is highly dependent upon a low energy
requlirement for complete vaporization. This appears to be
related also to the rate of energy deposition since materials
with relatively high energy requirement exhibit lower peak
powers.

6
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2. Different wire materials have different optimum
lengths for effecting detonation. Aluminum and gold (Class I)
have longer optimum lengths than platinum and tungsten
(Class II).

3. Aluminum and gold (Class I) give more vigorcus
explosions than platinum or tungsten (Class II).

4. Heat of oxidation of the wire material, appears to
play a relatively minor role in effecting detonation.

7
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